Understanding the Physics of Launching Rings

In-depth look at how projectiles move

Important Things to Note

SOH, CAH, TOA

SOH \rightarrow Sin: $\operatorname{Sin}(\theta)=$ Opposite/Hypotenuse
$\mathrm{CAH} \rightarrow \operatorname{Cos:~} \operatorname{Cos}(\theta)=$ Adjacent/Hypotenuse
TOA \rightarrow Tan: $\operatorname{Tan}(\theta)=$ Opposite/Adjacent
$\theta \rightarrow$ Theta (symbol for angle)

Overview Of Entire Trajectory

V - velocity
V_{z} - horizontal velocity
W_{y} - vertical velocity
ar - angle of launch
/b - initial height
t - time of flight
d - distance (range)
$/ / h_{\text {maxa }}$ - maximum height

What we Already Know

- Velocity (V)
- Angle (a)
- Height from Ground (h)

Deriving Velocity Components

Calculating Velocity Components (Vertical/Horizontal)

Calculating Horizontal Velocity Component

By creating a triangle using the dotted blue line, we can easily find V_{x} by using cos.

We know: V (hypotenuse) and the angle. $\cos (\theta)=$ Adjacent/Hypotenuse

Multiply both sides by Hypotenuse: $\cos (\theta) *$ Hypotenuse $(\mathrm{V})=\operatorname{Adjacent}\left(\mathrm{V}_{\mathrm{x}}\right)$

Hence, $\mathrm{V}_{\mathrm{x}}=\mathrm{V}^{*} \cos (\mathrm{a})$

Calculating Vertical Velocity Component

By creating a triangle using the dotted blue line and transferring angle a from the previous triangle, we can easily find V_{y} by using sin.

We know: V (hypotenuse) and the angle.
$\sin (\theta)=$ Opposite/Hypotenuse
Multiply both sides by Hypotenuse:
$\sin (\theta) *$ Hypotenuse(V) $=$ Opposite $\left(V_{y}\right)$

Hence, $V_{y}=V^{*} \sin (a)$

Distance Equations

Distance, Rate, Time \rightarrow Horizontal Distance

Distance = Rate * Time
$x \rightarrow$ Horizontal Distance
$\mathrm{V}_{\mathrm{x}} \rightarrow$ Horizontal Velocity
$t \rightarrow$ Time
$\rightarrow \mathrm{X}=\mathrm{V}_{\mathrm{x}}{ }^{*} \mathrm{t}$

Vertical Height

If NO Gravity:

$y=h+\left(V_{y}\right.$ * $\left.t\right)$
y will increase as time increases (if V_{y} is >0)
If Gravity:
$y=h+\left(V_{y}{ }^{*} t\right)-\left(1 / 2^{*} g t^{2}\right)$
$\mathrm{g} \rightarrow$ Gravitational Acceleration ($9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ or $9 / 8 \mathrm{~m} / \mathrm{s}^{2}$)

Calculating Time of Flight

 At what time the ring hits the ground
Time of Flight

We can use our expression from calculating Vertical height and set it to 0 , because that is when it hits the ground:

$$
h+V_{y}{ }^{*} t-g^{*} t^{2} / 2=0
$$

Now, using the quadratic formula, we can reorder to get:
$-1 / 2 g^{*} t^{2}+V_{y}{ }^{\prime} t+h$ where $a=-1 / 2 g, b=V_{y}$, and $c=h$
Then, we use those variables and plug them into the quadratic formula to solve for t
$\left.\left.t=\left[V^{*} \sin (a)+\sqrt{((V *} \sin (a)\right)^{2}+2^{*} g^{*} h\right)\right] / g$

Calculating Distance

How far the ring hits the ground from the start (Projectile Range)

Range of Ring

Formula for Range $\rightarrow R=V_{x}{ }^{*} t$
$t=\left[V^{*} \sin (a)+\sqrt{ }\left(\left(V^{*} \sin (a)\right)^{2}+2^{*} g^{*} h\right)\right] / g \leftarrow$ from time of flight calculation
$V_{x}=V^{*} \cos (a)$
Final Formula: $\mathbf{R}=\mathrm{V}^{*} \cos (\mathrm{a})^{*}\left[\mathrm{~V}^{*} \sin (\mathrm{a})+\sqrt{ }\left(\left(\mathrm{V}{ }^{*} \sin (\mathrm{a})\right)^{2}+2^{*} \mathrm{~g}{ }^{*} \mathrm{~h}\right)\right] / \mathrm{g}$
Above, we substituted \mathbf{V}_{x} for " V * $\cos (\mathrm{a})$ " and \mathbf{t} for the equation from before

Calculating Max Height

 Apex of the Ring's Trajectory
Max Height

What is Max Height? Max height is when the ring stops increasing height, and when V_{y} is 0 , meaning there is no vertical velocity. This is the apex or vertex of our height vs. time graph.

From: $\mathbf{h}+\mathrm{v}_{\mathrm{y}}{ }^{*} \mathrm{t}-1 / 2^{*}\left(\mathbf{g}^{*} \mathrm{t}^{2}\right)$, we can convert to quadratic form $\left(a x^{2}+\mathrm{bx}+\mathrm{c}\right)$:

$$
-1 / 2 g^{*} t^{2}+V_{y} \text { " } t+h \text { where } a=-1 / 2 g, b=V_{y} \text {, and } c=h
$$

To find the vertex, we use the vertex formula: $\mathbf{x}=-\mathrm{b} / \mathbf{2 a}, \mathrm{x}$ in our graph is t So, time at which height is most (or V_{y} is 0) is when: $\mathrm{t}=-\left(\mathrm{V}_{\mathrm{y}}\right) / 2^{*}(-1 / 2 \mathrm{~g}) \rightarrow \mathrm{t}=\mathrm{V}_{\mathrm{y}} / \mathrm{g}$

Max Height

Now, we take our original formula from not so long ago: $V_{y}^{*} t-1 / 2 g^{*} t^{2}$
But now, $\mathbf{t}=\mathbf{V}_{\mathbf{y}} / \mathbf{g}$, so we substitute t to get:
$h_{\max }=V_{y}{ }^{*}\left(V_{y} / g\right)-1 / 2 g^{*}\left(V_{y} / g\right)^{2}=V_{y}{ }^{2} / g-1 / 2 V_{y}{ }^{2} / g=1 / 2 V_{y}{ }^{2} / g=\mathbf{V}_{\mathbf{y}}{ }^{2} / \mathbf{2}^{*} \mathbf{g}$
We now substitute $V^{*} \sin (a)$ for $V_{y} \rightarrow h_{\max }=\left(V^{*} \sin (a)\right)^{2} / 2^{*} g$
Since h just shifts everything up, we can just add h to the equation:
$h_{\max }=h+\left(V^{*} \sin (a)\right)^{2} / 2^{*} g$

YAY!

Now, we have calculated all of the equations!

INN@V8RZ

Quick Recap of All Equations

- Horizontal velocity component: $\mathrm{V}_{\mathrm{x}}=\mathrm{V}$ * $\cos (\mathrm{a})$
- Vertical velocity component: $\mathrm{V}_{\mathrm{y}}=\mathrm{V}^{*} \sin (\mathrm{a})$
- Time of Flight: $\left.t=\left[V^{*} \sin (a)+\sqrt{(}\left(V^{*} \sin (a)\right)^{2}+2^{*} g^{*} h\right)\right] / g$
- Range of Ring: $R=V^{*} \cos (a)^{*}\left[V^{*} \sin (a)+\sqrt{ }\left(\left(V^{*} \sin (a)\right)^{2}+2^{*} g * h\right)\right] / g$
- Maximum Height: $\mathrm{h}_{\max }=\mathrm{h}+\left(\mathrm{V}^{*} \sin (\mathrm{a})\right)^{2} / 2^{*} \mathrm{~g}$

